A Bayesian inference approach to the inverse heat conduction problem
نویسندگان
چکیده
A Bayesian inference approach is presented for the solution of the inverse heat conduction problem. The posterior probability density function (PPDF) of the boundary heat flux is computed given temperature measurements within a conducting solid. Uncertainty in temperature measurements is modeled as stationary zero-mean white noise. The inverse solution is obtained by computing the expectation of the PPDF. The posterior state space is exploited using Markov Chain Monte Carlo (MCMC) algorithms in order to obtain estimates of the statistics of the unknown heat flux. The MCMC sampling strategy enables the extension of the Bayesian inference approach to inverse problems having high-dimensional, non-standard distribution, and/or complex PPDFs. The ill-posedness (un-identifiability) of the inverse problem is cured through prior distribution modeling (Bayesian prior regularization) of the unknown heat flux. A special model of Markov Random Field (MRF) is adopted for prior distribution modeling of the unknown heat flux. An augmented Bayesian model is proposed for estimating the statistics of the measurement noise as well as the unknown heat flux. Two inverse heat conduction examples are presented to demonstrate the potential of the MCMC-based Bayesian approach. The simulation results indicate that MRF provides an effective prior regularization, the estimates using MCMC samples are accurate and the Bayesian approach captures very well the probability distribution of the unknown heat flux.
منابع مشابه
Inverse Problems in Heat Transfer
17.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 17.2THE INVERSE HEAT-CONDUCTION PROBLEM A SPECTRAL STOCHASTIC APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 17.2.1Introduction: Representation of random variables . . . . . . . . . . . 9 17.2.2The stochastic inverse heat-conduction problem (SIHCP): Problem definition ....
متن کاملA novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem
Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کامل